Actin dynamics in growth cones.
نویسندگان
چکیده
The mechanism of actin incorporation and turnover in the nerve growth cone was examined by immunoelectron microscopy and low-light-level video microscopy of cultured neurons injected with biotin-labeled actin or fluorescently labeled actin. We first determined the sites of actin incorporation into the cytoskeleton of growth cones by immunoelectron microscopy of cultured neurons injected with biotin-labeled actin and reacted with an anti-biotin antibody and a gold-labeled secondary antibody. Shortly after the injection, biotin-actin molecules incorporated into the cytoskeleton were localized in the distal part of actin bundles in the filopodia and at the membrane-associated fringe of the actin filament network. With longer incubation, most actin polymers in the growth cones were labeled uniformly, suggesting that actin subunits are added preferentially at the membrane-associated ends of preexisting actin filaments. We then determined whether actin filaments translocate within the growth cones by low-light-level video microscopy of living neurons injected with fluorescently labeled actin and photobleached with a laser beam. When actin fluorescence at the leading edge of a growth cone was bleached, a rearward translocation of the bleached spot toward the base of the growth cone was observed. This observation suggests the presence of a rearward flow of actin polymers within growth cones. Taken together, these results indicate that there is a continuous addition of actin monomers at the leading edge of the growth cone and a successive rearward translocation of the assembled filaments.
منابع مشابه
Regulation of growth cone actin filaments by guidance cues.
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dyn...
متن کاملAxon branching requires interactions between dynamic microtubules and actin filaments.
Cortical neurons innervate many of their targets by collateral axon branching, which requires local reorganization of the cytoskeleton. We coinjected cortical neurons with fluorescently labeled tubulin and phalloidin and used fluorescence time-lapse imaging to analyze interactions between microtubules and actin filaments (F-actin) in cortical growth cones and axons undergoing branching. In grow...
متن کاملRegulation of growth cone actin dynamics by ADF/cofilin.
Nervous system development is reliant on neuronal pathfinding, the process in which axons are guided to their target cells by specific extracellular cues. The ability of neurons to extend over long distances in response to environmental guidance signals is made possible by the growth cone, a highly motile structure found at the end of neuronal processes. Growth cones detect directional cues and...
متن کاملDynamic Localization of G-Actin during Membrane Protrusion in Neuronal Motility
BACKGROUND Actin-based cell motility is fundamental for development, function, and malignant events in eukaryotic organisms. During neural development, axonal growth cones depend on rapid assembly and disassembly of actin filaments (F-actin) for their guided extension to specific targets for wiring. Monomeric globular actin (G-actin) is the building block for F-actin but is not considered to pl...
متن کاملAccumulation of actin in subsets of pioneer growth cone filopodia in response to neural and epithelial guidance cues in situ
Directed outgrowth of neural processes must involve transmission of signals from the tips of filopodia to the central region of the growth cone. Here, we report on the distribution and dynamics of one possible element in this process, actin, in live growth cones which are reorienting in response to in situ guidance cues. In grasshopper embryonic limbs, pioneer growth cones respond to at least t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 7 شماره
صفحات -
تاریخ انتشار 1991